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1. INTRODUCTION 

The solution of droplet or bubble motion in Stokes flows is very similar to problems concerning 
rigid particles. The governing field equations in both cases are the same, yet the boundary 
conditions imposed on the interface of a drop are more complex and couple the outer field 
region with the fluid field interior to the drop. Thus, the flow field exterior to the drop has to be 
solved simultaneously with the flow field interior to it. The no-slip condition on the boundary of 
a solid particle suspended in Stokes flows, implies that three components of the velocity field 
and the pressure field have to be obtained, subject to three boundary conditions on the surface 
of the particle, in addition to the boundary condition at infinity. 

For a similar problem concerning a drop, three components of the velocity field exterior to 
the drop and three components of the velocity field interior to the drop have to be calculated 
subject to seven boundary conditions to be satisfied on the interface. 

The seven boundary conditions employed on the interface (assuming absence of surfactants) 
are as follows: 

(a) The continuity of the velocity field through the interface yields three scalar boundary 
conditions. 

(b) No mass transfer through the interface yields one boundary condition. 
(c) Continuity of the tangential components of the stress vector acting on the interface 

yields two boundary conditions. 
(d) The last boundary condition links the normal component of the stress vector acting on 

the interface and the surface tension. 
For a spherical drop where the inequality (#Is]a/a) ¢ 1 holds, (/z, I_sl denote the viscosity and 

the strain rate of the outer field respectively, a is the droplet's radius, and o- is the surface 
tension) the last boundary condition is superfluous (Hetsroni & Haber 1970). For a problem 
including n spherical drops suspended in a Stokesian field, one should have to satisfy 6n 
boundary conditions compared to 3n boundary conditions of the equivalent case concerning 
rigid particles. 

This note presents a new formulation for the existing boundary conditions imposed on the 
interface of a spherical drop. The suggested presentation decouples the flow field interior to the 
drop from the one exterior to it and provides a set of equations which is sufficient to determine 
the flow field exterior to the drop and the drag force acting on the drop without the necessity of 
solving simultaneously the flow field interior to the drop. 

2, THE SOLUTION 

The boundary conditions, employed on the interface of a droplet, couple the velocities and 
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the stresses of the flow fields interior to the drop and exterior to it, i.e. 

v . i ' = U . ~  

V = U  

f .  FI_. ( ! -  ~ )  = ~. r .  ( I -  f~) 

r = a ,  

[ i ]  

12] 

[3] 

where v and _II denote the velocity and stress fields exterior to the drop (outer fields), u and 
denote the velocity and stress fields interior to the drop (inner fields), U is the terminal velocity 
of the drop, I_ is the idem tensor and f is a unit vector normal to the interface, 

These conditions are homogeneous, except boundary condition [1] satisfied by the com- 
ponent of the velocity field normal to the interface (which depends on the terminal velocity of 
the drop). 

The components of the velocity and stress vector fields tangential to the interface are 
unknown in advance. However, their evaluation at the interface should yield some regular 
functions of 0 and 05 (where r, 0, 05 are spherical coordinates with the origin located at the 
center of the drop). The non-singularity of these functions stems from the fact that both the 
velocity and the stresses are finite. Moreover, since the velocity field satisfies Stokes equations, 
it must be differentiable twice while the stress should be at least differentiable once. 

The velocity field interior to a spherical shape drop can be derived, provided the velocity field is a 
known prescribed function at the interface. Lamb's general solution (Happel & Brenner 1%5) may 
furnish the desired velocity and pressure fields, i.e. 

u= £ {V×(rh,)+Vr,+ 
t l=l 

n + 3  
2(n + l)(2n + 3) 

~7(rZqn) 

(n + 1)(2n +3) rq" ' [41 

q = #i ~, q,, 
n=O 

where r is the position vector measured from the center of the drop, q and tti denote the 
pressure and viscosity of the inner field and r~, h, and q, are solid spherical harmonics. Thus, 
the functional form of u and q is readily obtained while only the unknown coefficients of the 
solid harmonics have to be derived. These coefficients are determined utilizing the boundary 

conditions given at the interface of the drop. 
Assuming that the solution of the outer field is known, then the boundary conditions [1] and 

[2], were sufficient to determine the inner field; namely all the unknown coefficients of the inner 
field can be determined via the assumed known velocity components. However, the boundary 
condition [3] relating the stress fields, has to be satisfied also. This boundary condition yields a 
redundant set of equations for the same unknown coefficients of the inner field. In order to have 
just one solution, certain relationships must exist between the velocity and the stress fields of 
the outer field evaluated at the interface. These relationships are the boundary conditions 
specified on the interface of the drop pertaining to the outer field, i.e. 

v .  ~ = u .  ~, [51 

s{la, i(tl - -  1)[i". V × v] - r .  V × II{,)}SZ (0, 05) ds = O, [61 

fs {l~, [(n-1)v,+(2n + l) (r ~r ) ] + r. V x (r × H~)} S,"(O, 05)ds =O, [71 
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where v, = v. ~, llt,j = II.  f and ds denotes a surface element on the interface and S,'(O, dp) is a 

surface harmonic, namely: 

S/"(O, ~) = c.°Sm~p/"(cos 0) m = 0, 1,2 . . . . .  n [8] 
sm n = 1,2,3 . . . . .  o~ ' 

where P/"(cos 0) denotes the associated Legendre polynomial. 
The method used to derive [6] and [7] is outlined in the following paragraph. 

3. M E T HOD OF S O L U T I O N  

The boundary conditions [1]-[3] can be transformed as follows (Hetsroni & Haber 1970): 

v. f '=u. i"  

r Or" = r Our 
Or --~ 

r .  V x v = r .  VXu 

r .V xII(,~= r .V x ~% 

r .  VX(rXHt, ) )=r .  VX(rx~'tr )) 

a t r = a .  [9] 

Utilizing [4] one obtains the following equations 

n = |  

n= l  

n = l  

--/ / i  
n ~ l  

a n"l  

q" a I". = v, 

n(n+l )a  - 1 )  } rC~V' a t r = a  2 - ~ . ~ q . +  n ( n  r~ = Or 

n(n + 1)h. = r , V X v  

2(n - l)(n + l)n n2(n +2) 1 a r.+ ~ q.]=r. VX(rXH~,)) 

n(n - 1)(n + 1)h. = r. V x Ilt,). 

a t r = a .  

[io] 

[ l l ]  

[12] 

[13] 

[14] 

In general the solid harmonics q., r~ and h. have the following form: 

q. = r ~ m~=o= (Q/" cos m~b + 0.  = sin m~b)P/"(cos 0), 

r. = r ~ ~ (R." cos m~b +R/"  sin m~b)P/"(cos 0), 
m r 0  

h. = f ~ (H. '~ cos m4~ +/q~" sin m~)P/"(cos 0), 
m=O 

[151 

where r = Irl, Q,% (~/", etc. are unknown constant coefficients to be determined. 
Substituting [15] in the I.h.s. of [10]-[14] using the orthogonal properties of the Legendre 

polynomials one can eliminate the coefficients Q,, R~, H,, etc. and obtain [6] and [7]. It should 
be noted that no more than first order derivatives of the stress vector are included in this 
formulation. This consistent with the arguments at the beginning of section 2. 

To represent [6] and [7] in invariant form (independent of the choice of the coordinate 
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system, i.e. the angles 0 and (b), one can utilize the n rank tensors Sn defined by Brenner (1%4) 
and replace Sn(O, c~) by Sn where 

Sn = ~ r"+rV" (~) , 1161 

e.g. 

, (-)  s '=r ' r  S~=. ~ 3 7 - !  , etc. 

Thus [6] and [7] are the boundary conditions applied to the outer velocity field v decoupled 
from the interior flow field u. They depend solely on #i and a which are the only parameters of 
the field interior to the drop. 

4. E X A M P L E  

Since the governing field equations for a droplet and a solid sphere are equivalent, the 
general solution should be the same, i.e. 

r a3  V = [(At  a +  A 2 ~ ) ! +  ( A 3 a +  A4 ~-~) " ]  . U , [17] 

p =/z0A5 ~ ~. U, [18t 

where A1 and A5 are unknown coefficients. In order to satisfy the continuity equation one 
readily obtains 

A1 = A3, [19] 

-3A2 = m4. [201 

The following functions of v should be calculated: 

[ v,= 2Ala-2A2 [~ U] [211 
r ~ " ' 

r = (-2A, + 6Az)(~ U) [22] 
OVr ] 
O r  J r = a  " ' 

and 

~o.~r,=[2A o~ ~ , +  ~f°ncti°" of r. o aod the~ ~] u.known coe~cients J ~ I23~ 

where the term in brackets is immaterial for further calculations. Utilizing boundary condition 
[5] one obtains easily 

2Ai - 2A2 = I . [24] 

Sub~ituting [17] and [23] in boundary condition [6] yields equations which vanish identically. 
Substituting [22] and [23] in boundary condition [71 yields: 

[-6AA1 + 6(3A + 2)A2]U0. ( ~ ds = 0, [251 
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for n = 1. For n > 1 the equations vanish identically. Since the integral in [25] is (4~'/3)a21_ the 
term in brackets must vanish, i.e. 

-AAt + (2 + 3•)A2 = 0. [26] 

Equations [19], [20], [24] and [26] are sufficient to determine the unknowns Al, A2, A3 and 
A4, i.e. 

2+3A 
AI = A3 = 1 + ,~ ' [27] 

A2 = -A4 = A 
3 4(1+,~) [28] 

The pressure p can be determined by a straightforward substitution of [17] in the momentum 
equation. 

5. CONCLUSIONS 

Equations [6] and [7] provide a new formulation for the existing boundary conditions on the 
interface of a spherical drop. The solution of Hadamard (1911) and Rybczynski (1911) is easily 
obtained as shown in paragraph 4. The solution of two drops moving along their line of centers 
was obtained by Haber et al. (1974) by means of a stream function and is not repeated here 
because of its complexity. The problem concerning two drops moving perpendicular to their 
line of centers has not been solved in a closed form solution. 

The method presented by O'Neill & Majumdar (1970) for the solution of two rigid spheres 
moving in the same configuration is not as applicable as one might think. Since the number Of 
the undetermined coeffcients increases rapidly (because of the two extra fields interior to the 
drops to be simultaneously determined) the solution relies heavily on numerical calculations. 
The boundary conditions represented in [6] and [7] may provide a new method for the solution 
of that problem (and other related problems) by analytical or numerical integration. 

The numerical integration seems to be most promising, since the general solution presented 
by bi-spherical harmonics is determined by conditions on the boundaries of a finite rectangle. 
On the other hand, the solution which relies on the regular boundary conditions has to be 
determined by conditions imposed on the boundaries of an infinite band. 
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